Economical Evaluation of Runge-Kutta Formulae

By David J. Fyfe

1. Gill [1] and Blum [2] have produced special versions of the Runge-Kutta fourth order method for the solution of N simultaneous first order differential equations which require 3N + P storage locations against the normal 4N + P, where P is the storage required by the program. It is shown below that it is possible to arrange all such methods in a form which requires 3N + P storage locations. Gill's method for reducing round off error is also extended.

2. The Runge-Kutta fourth order methods for solving the N equations

$$y_i' = f_i(x, y_1, y_2, \cdots, y_N),$$

 $y_i(x_0) = y_{i0}, \qquad i = 1, 2, \cdots, N,$

are usually written in the form $(y_{ij} = y_i (x_j))$

$$y_{ij+1} = y_{ij} + ak_{i0} + bk_{i1} + ck_{i2} + dk_{i3},$$

where

$$k_{i0} = hf_i(x_j, y_{1j}, y_{2j}, \dots, y_{Nj}),$$

$$k_{i1} = hf_i(x_j + mh, y_{1j} + mk_{10}, \dots, y_{Nj} + mk_{N0}),$$

$$k_{i2} = hf_i(x_j + nh, y_{1j} + (n - r)k_{10} + rk_{11}, \dots, y_{Nj} + (n - r)k_{N0} + rk_{N1}),$$

$$k_{i3} = hf_i(x_j + ph, y_{1j} + (p - s - t)k_{10} + sk_{11} + tk_{12}, \dots, +y_{Nj} + (p - s - t)k_{N0} + sk_{N1} + tk_{N2}),$$

 $i=1, 2, \cdots, N.$

The a, b, c, d, m, n, p, r, s, t satisfy the following eight equations

(2)

$$a + b + c + d = 1,$$

$$bm + cn + dp = \frac{1}{2},$$

$$bm^{2} + cn^{2} + dp^{2} = \frac{1}{3},$$

$$cmr + dnt + dms = \frac{1}{6},$$

$$bm^{3} + cn^{3} + dp^{3} = \frac{1}{4},$$

$$cmnr + dntp + dmsp = \frac{1}{8},$$

$$cm^{2}r + dn^{2}t + dm^{2}s = \frac{1}{12},$$

$$dmrt = \frac{1}{24}.$$

The computation with the formulae arranged in this form requires 4N + P storage

Received October 4, 1965.

locations. It is now shown that by splitting the computation into four stages it is possible to obtain the solution by storing 3N quantities at each stage.

Let

$$Z_{i0} = y_{ij},$$

$$Z_{i1} = y_{ij} + mk_{i0},$$

$$Z_{i2} = y_{ij} + (n - r)k_{i0} + rk_{i1},$$

$$Z_{i3} = y_{ij} + (p - s - t)k_{i0} + sk_{i1} + tk_{12},$$

$$y_{ij+1} \equiv Z_{i4} = y_{ij} + ak_{i0} + bk_{i1} + ck_{i2} + dk_{i3}.$$

Expressing each Z_i in terms of the previous value we obtain

$$\begin{aligned} Z_{i0} &= y_{ij}, \\ Z_{i1} &= Z_{i0} + mk_{i0}, \\ Z_{i2} &= Z_{i1} + (n - m + r)k_{i0} + rk_{i1}, \\ Z_{i3} &= Z_{i2} + (p - s - t - n + r)k_{i0} + (s - r)k_{i1} + tk_{i2}, \\ Z_{i4} &= Z_{i3} + (a - p + s + t)k_{i0} + (b - s)k_{i1} + (c - t)k_{i2} + dk_{i3}. \end{aligned}$$

Let $P_{i0} = k_{i0} = hf_i(x_j, Z_{10}, \dots, Z_{N0})$, then $Z_{i1} = Z_{i0} + mP_{i0}$. Let $Q_{i1} = P_{i0}$, and $P_{i1} = k_{i1} = hf_i(x_j + mh, Z_{11}, \dots, Z_{N1})$, then $Z_{i2} = Z_{i1} + (n - m - r)Q_{i1} + rP_{i1}$.

The P_{i1} and Z_{i2} are stored in the locations occupied by P_{i0} and Z_{i1} as the latter are no longer required.

Let $Q_{i2} = Q_{i1} + AP_{i1}$, and $P_{i2} = k_{i2} + BP_{i1}$. If A and B are chosen so that (3) (p - s - t - n + r)A + tB = (s - r),

then $Z_{i3} = Z_{i2} + (p - s - t - n + r)Q_{i2} + tP_{i2}$. Again the new P_i , Q_i , Z_i replace the previous triplet.

Let $Q_{i3} = Q_{i2}$, and $P_{i3} = k_{i3} + CP_{i2}$. If A, B, C are chosen so that

(4)
$$(a - p + s + t)A + dBC = (b - s)$$

and

$$(5) dC = (c - t)$$

then $Z_{i4} = Z_{i3} + (a - p + s + t)Q_{i3} + dP_{i3}$. In the above equations each triplet Z, P, Q is expressed in terms of the previous triplet only and so only 3N storage locations are required.

Solving (3), (4) and (5) we obtain

$$A = \frac{(c-t)(s-r) - t(b-s)}{(c-t)(p-s-t-n+r) - t(a-p+s+t)},$$

$$B = \frac{s-r}{t} - \frac{(p-s-t-n+r)}{t}A,$$

$$C = \frac{c-t}{d},$$

(d = 0 or t = 0 is impossible from (2)).

Thus if the equations are arranged as follows only 3N + P storage locations are required:

$$Z_{i0} = y_{ij},$$

$$P_{i0} = hf_i(x_j, Z_{10}, \dots, Z_{N0});$$

$$Z_{i1} = Z_{i0} + mP_{i0},$$

$$Q_{i1} = P_{i0},$$

$$P_{i1} = hf_i(x_j + mh, Z_{11}, \dots, Z_{N1});$$

$$Z_{i2} = Z_{i1} + (n - m - r)Q_{i1} + rP_{i1},$$

$$Q_{i2} = Q_{i1} + AP_{i1},$$

$$P_{i2} = hf_i(x_j + nh, Z_{12}, \dots, Z_{N2}) + BP_{i1};$$

$$Z_{i3} = Z_{i2} + (p - s - t - n + r)Q_{i2} + tP_{i2},$$

$$Q_{i3} = Q_{i2},$$

$$P_{i3} = hf_i(x_j + ph, Z_{13}, \dots, Z_{N3}) + CP_{i2};$$

$$y_{ij+1} \equiv Z_{i4} = Z_{i3} + (a - p + s + t)Q_{i3} + dP_{i3}$$

3. Gill's method of reducing round-off error is now applied to Equations (6). In this method artificial round-off errors are introduced to minimize the actual round-off error. This is possible because the quantities P_i and Q_i are of order h and so in general can be stored to a higher degree of accuracy than the Z_i . This is done automatically if floating point arithmetic is used. In the first equation of each triplet in Equations (6) (i.e. the calculation of Z_i) we are concerned with adding quantities of order h to quantities of order 1. We will show below that, by introducing appropriate modifications in the terms of order $h(Q_i)$, it is possible to compensate almost exactly for the errors in Z_i . If we let the round-off error in the calculation of P_{i0} , Z_{i1} , \cdots , be $e(P_{i0})$, $e(Z_{i1})$, \cdots , which we suppose are easily available when these quantities are computed, the total round-off error accumulated in one step is

$$E_{i} = e(Z_{i1}) + e(Z_{i2}) + e(Z_{i3}) + e(Z_{i4})$$

$$(7) + ae(P_{i0}) + be(P_{i1}) + ce(P_{i2}) + de(P_{i3})$$

$$+ (a - m)e(Q_{i1}) + (a - n + r)e(Q_{i2}) + (a - p + s + t)e(Q_{i3}).$$

We now introduce modifications $e'(Q_i)$ in the Q_i to compensate almost exactly for the errors in Z_i i.e. put

(8)

$$(a - m)e'(Q_{i1}) = -e(Z_{i1}),$$

$$(a - n + r)e'(Q_{i2}) = -e(Z_{i2}),$$

$$(a - p + s + t)e'(Q_{i3}) = -e(Z_{i3}).$$

In order to introduce these modifications we define quantities R_{i1} , R_{i2} , R_{i3} as

follows:

(9)

$$\begin{aligned} R_{i1} &= Z_{i1} - Z_{i0} = mP_{i0} + e(R_{i1}), \\ R_{i2} &= Z_{i2} - Z_{i1} = (n - m - r)Q_{i1} + rP_{i1} + e(R_{i2}), \\ R_{i3} &= Z_{i3} - Z_{i2} = (p - s - t - n + r)Q_{i2} + tP_{i2} + e(R_{i3}), \end{aligned}$$

where $e(R_{ij}) = e(Z_{ij}), j = 1, 2, 3.$ We thus introduce $e'(Q_{i1}), e'(Q_{i2}), e'(Q_{i3})$ such that

$$(a - m)e'(Q_{i1}) = -e(R_{i1}) = -(R_{i1} - mP_{i0}),$$

$$(a - n + r)e'(Q_{i2}) = -e(R_{i2}) = -(R_{i2} - (n - m - r)Q_{i1} - rP_{i1}),$$

$$(a - p + s + t)e'(Q_{i3}) = -e(R_{i3}) = -(R_{i3} - (p - s - t - n + r)Q_{i2} - tP_{i2}),$$

which almost exactly compensate for the errors in Z_{i1} , Z_{i2} , Z_{i3} . Therefore, redefine Q_{i1} , Q_{i2} , Q_{i3} as follows: $Q'_{ij} = Q_{ij} + e'(Q_{ij}), j = 1, 2, 3$.

$$\begin{aligned} Q'_{i1} &= \left(\frac{a}{a-m}\right) P_{i0} - \frac{1}{a-m} R_{i1}, \\ Q'_{i2} &= \left(\frac{a-m}{a-n+r}\right) Q'_{i1} + \left(A + \frac{r}{a-n+r}\right) P_{i1} - \frac{1}{a-n+r} R_{i2}, \\ Q'_{i3} &= \left(\frac{a-n+r}{a-p+s+t}\right) Q'_{i2} + \frac{t}{a-p+s+t} P_{i2} - \frac{1}{a-p+s+t} R_{i3}. \end{aligned}$$

Making the above change requires only one additional storage location as the R_i 's are used temporarily in the formation of the Z_i and Q_i' . The primes on Q_i will now be dropped for convenience. The only large error term remaining is $e(Z_{i4})$. In order to eliminate this introduce Q_{i0} , R_{i4} and Q_{i4} , where Q_{i4} at one step becomes Q_{i0} at the next.

Define:

$$\begin{aligned} R_{i4} &= Z_{i4} - Z_{i3} = (a - p + s + t)Q_{i3} + dP_{i3} + e(R_{i4}), \\ Q_{i4} &= e(R_{i4}) = R_{i4} - (a - p + s + t)Q_{i3} - dP_{i3}, \\ Q_{i0} &= [Q_{i4}]_{x=x_j}. \end{aligned}$$

 Q_{i4} is the round-off error in Z_{i4} .

Since $Z_{i0} = y_{ij}$, the best available estimate would appear to be $[Z_{i4} - Q_{i4}]_{x=x_i}$ which gives

$$R_{i1} = Z_{i1} - y_{ij} = Z_{i1} - Z_{i0} + Q_{i0} \, .$$

Thus we redefine R_{i1} and consequently Q_{i1} as follows:

$$R_{i1} = mP_{i0} - Q_{i0} + e(R_{i1})$$

and

$$Q_{i1} = \left(\frac{a}{a-m}\right) P_{i0} - \frac{1}{a-m} Q_{i0} - \frac{1}{a-m} R_{i1}.$$

However, it will now be shown, following Gill [1], that it is slightly better to let

Table 1	Coefficients of errors	$e(R_{i3})$	000		0	0	0	1		$-\frac{1}{a-p+s+t}$	-	00
		$e(R_{i2})$	000	00 0	1	1	$-\frac{1}{a-n+r}$	$-\left(\frac{p-s-t-n+r}{a-n+r}\right)$	$\left(rac{a-p+s+t}{a-n+r} ight)$	$-rac{1}{a-n+r}$	$-\left(\frac{a-p+s+t}{a-n+r}\right)$	00
		$e(R_{i1})$	000	$\begin{array}{c} 1\\ 1\\ a-m\\ m \end{array}$	$-\left(\frac{n-m-r}{a-m}\right)$	$\left({a - n + r \over a - m} ight)$	$-\frac{1}{a-m}$	$-\left(\frac{p-s-t-n+r}{a-m}\right)$	$\left(rac{a-p+s+t}{a-m} ight)$	$-rac{1}{a-m}$	$-\left(rac{a-p+s+t}{a-m} ight)$	00
		$e(R_{i0})$		$-\frac{1}{a-m} \frac{(1-w)}{(1-w)}$	$-\left(\frac{n-m-r}{a-m}\right)(1-w)$	$\left(\underbrace{\left(a-n+r ight)}{a-m} ight) (1-w)$	$-rac{1}{a-m}\left(1-w ight)$	$-\left(\frac{p-s-t-n+r}{a-m}\right)(1-w)$	$\left(\frac{a-p+s+t}{a-m}\right)(1-w)$	$-rac{1}{a-m}\left(1-w ight)$	$-\left(\frac{a-p+s+t}{a-m}\right)(1-w)$	00
	Quan-	tity -	$\left egin{array}{c} R_{i0} \\ Z_{i0} \\ Q_{i0} \end{array} \right $	$R_{\rm di}$ $Z_{\rm di}$ $Q_{\rm di}$	R_{i2}	Z_{i2}	Q_{i2}	R_{i3}	Z_{i3}	Q_{i3}	Ria	Z 14 Q 14

396

DAVID J. FYFE

$$R_{i1} = mP_{i0} - wQ_{i0} + e(R_{i1}),$$

where

$$w = 1 + \frac{2a(a-m)}{2a(1-a) - 1 + 2(cr + ds + dt)}.$$

Table 1 shows the errors in each quantity R_i , Z_i , Q_i within one step of errors $e(R_{i0})$, $e(R_{i1})$, $e(R_{i2})$, $e(R_{i3})$, where $R_{i0} = [R_{i4}]_{x=x_j}$. The error in y_{ij+1} due to errors in the P_i caused by errors in Z_i is given by

$$E(y_{ij+1}) = aE(P_{i0}) + bE(P_{i1}) + cE(P_{i2}) + dE(P_{i3}),$$

where $E(P_{i0})$ represents the total error in P_{i0} etc. If we assume that the partial derivatives $\partial f_i / \partial y_k$, $k = 1, 2, \dots, N$, are constant over one step

$$E(y_{i_{j+1}}) = h \sum_{k=1}^{N} \frac{\partial f_i}{\partial y_k} \{ a E(Z_{k0}) + b E(Z_{k1}) + c E(Z_{k2}) + d E(Z_{k3}) \},\$$

= $h \sum_{k=1}^{N} \frac{\partial f_i}{\partial y_k} \{ Se(R_{k0}) + Te(R_{k1}) + Ue(R_{k2}) + Ve(R_{k3}) \},\$

where

$$S = a + (1 - w) \left[b + c \left(\frac{a - n + r}{a - m} \right) + d \left(\frac{a - p + s + t}{a - m} \right) \right],$$

$$T = b + c \left(\frac{a - n + r}{a - m} \right) + d \left(\frac{a - p + s + t}{a - m} \right),$$

$$U = c + d \left(\frac{a - p + s + t}{a - n + r} \right),$$

$$V = d.$$

Assuming the $e(R_i)$ are randomly distributed between $-\frac{1}{2}$ unit and $+\frac{1}{2}$ unit, the standard deviation in y_{ij+1} from this source is a minimum if S = 0, which leads to the optimum value

$$w = 1 + \frac{a(a - m)}{b(a - m) + c(a - n + r) + d(a - p + s + t)},$$

= 1 + $\frac{2a(a - m)}{2a(1 - a) - 1 + 2(cr + ds + dt)}$ (from Equation (2)).

The final formulae are therefore:

$$Z_{i0} = y_{ij}, \quad Q_{i0} = [Q_{i4}]_{x=x_j},$$

$$P_{i0} = hf_i(x_j, Z_{10}, \dots, Z_{N0});$$

$$R_{i1} = mP_{i0} - wQ_{i0} + e(R_{i1}),$$

$$Z_{i1} = Z_{i0} + R_{i1},$$

$$Q_{i1} = \left(\frac{a}{a-m}\right)P_{i0} - \frac{1}{a-m}Q_{i0} - \frac{1}{a-m}R_{i1},$$

$$P_{i1} = hf_i(x_j + mh, Z_{11}, \dots, Z_{N1});$$

$$\begin{aligned} R_{i2} &= (n - m - r)Q_{i1} + rP_{i1} + e(R_{i2}), \\ Z_{i2} &= Z_{i1} + R_{i2}, \\ Q_{i2} &= \left(\frac{a - m}{a - n + r}\right)Q_{i1} + \left(A + \frac{r}{a - n + r}\right)P_{i1} - \left(\frac{1}{a - n + r}\right)R_{i2}, \\ P_{i2} &= hf_i(x_j + nh, Z_{12}, \cdots, Z_{N2}) + BP_{i1}; \\ R_{i3} &= (p - s - t - n + r)Q_{i2} + tP_{i2} + e(R_{i3}), \\ Z_{i3} &= Z_{i2} + R_{i3}, \\ Q_{i3} &= \left(\frac{a - n + r}{a - p + s + t}\right)Q_{i2} + \left(\frac{t}{a - p + s + t}\right)P_{i2} - \frac{1}{a - p + s + t}R_{i3}, \\ P_{i3} &= hf_i(x_j + ph, Z_{13}, \cdots, Z_{N3}) + \frac{c - t}{d}P_{i2}; \\ R_{i4} &= (a - p + s + t)Q_{i3} + dP_{i3} + e(R_{i4}), \\ y_{ij+1} &= Z_{i4} = Z_{i3} + R_{i4}, \\ Q_{i4} &= R_{i4} - (a - p + s + t)Q_{i3} - dP_{i3}. \end{aligned}$$

Mathematics Department Woolwich Polytechnic London, England

S. GILL, "A process for the step-by-step integration of differential equations in an automatic digital computing machine," Proc. Cambridge Philos. Soc., v. 47, 1951, pp. 95-108. MR 12, 538.
 E. K. BLUM, "A modification of the Runge-Kutta fourth order method," Math. of Comp., v. 16, 1962, pp. 176-187. MR 26 #3190.

.